ЕҢБЕК ҚЫЗЫЛ ТУ ОРДЕНДІ «Ә. Б. БЕКТҰРОВ АТЫНДАҒЫ ХИМИЯ ҒЫЛЫМДАРЫ ИНСТИТУТЫ» АКЦИОНЕРЛІК ҚОҒАМЫ

ҚАЗАҚСТАННЫҢ Химия Журналы

Химический Журнал Казахстана

CHEMICAL JOURNAL of KAZAKHSTAN

АКЦИОНЕРНОЕ ОБЩЕСТВО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ «ИНСТИТУТ ХИМИЧЕСКИХ НАУК им. А. Б. БЕКТУРОВА»

2 (70)

АПРЕЛЬ – ИЮНЬ 2020 г. ИЗДАЕТСЯ С ОКТЯБРЯ 2003 ГОДА ВЫХОДИТ 4 РАЗА В ГОД ISSN 1813-1107 № 2 2020

УДК 661.526

У. БЕСТЕРЕКОВ, А. Д. КЫДЫРАЛИЕВА, И. А. ПЕТРОПАВЛОВСКИЙ, А. А. БОЛЫСБЕК. К. Н. УРАКОВ

ЮКГУ им. М. Ауэзова, Шымкент, Республика Казахстан

РЕЗУЛЬТАТЫ РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ПО ПОЛУЧЕНИЮ NP-УДОБРЕНИЙ С РЕГУЛИРУЕМЫМ СООТНОШЕНИЕМ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ

Аннотация. В работе приведены результаты исследований по получению NP-удобрений с регулируемым соотношением питательных веществ на основе 64-71% концентрации раствора аммиачной селитры, представляющего собой промежуточной раствор производства аммиачной селитры по традиционной технологии технологический раствор после первый ступени выпарки, а также фосфоритной муки. Разработана математическая модель регулирования соотношений питательных элементов – азота и пятиокиси фосфора в целевом продукте, составлены расчетные аналитические выражения. Расчетно-экспериментальными методами выявлена практическая возможность получения NP-удобрений с регулируемым соотношением питательных элементов N: P_2O_5 в продукционных образцах 11:11; 13:10; 19:7; 21:6; 23:5 в % или в массовых соотношениях 1:1; 1,3:1; 2,7:1; 3,5:1; 4,6:1. С использованием нормативных методик анализа изучены состав и свойства целевых продуктов, вычислены расходные показатели исходных веществ в расчете на 1т продукционного NP-удобрения, найдены содержания питательных веществ в последнем. Установлено, что расчетные данные по регулированию соотношений питательных веществ в целевых продуктах хорошо согласуются с результатами экспериментальных исследований - среднее отклонение между опытными и расчетными величинами не превышает 1,0%. Показано, что получаемые NP-удобрения по качеству, а также по основным физико-химическом свойства, достаточно полно отвечают нормативным требованиям, предъявляемым к удобрительной продукции серийного производства.

Ключевые слова: раствор аммиачной селитры, фосфоритная мука, питательные вещества, азот, пятиокись фосфора, NP-удобрения.

Ведение. Разработка технологий получения сложных удобрений с регулируемым соотношением питательных веществ в их составе [1-6] имеет важное прикладное значение [7,8], так как при этом открывается реальная возможность приведения качества выпускаемой удобрительной продукции к любым агрохимическим требованиям [9,10], устанавливаемым с учетом вида выращиваемой сельскохозяйственной культуры, а также качественных показателей почвенного покрова посевной территории.

Методика исследований. Сущность разработанной технологии получения NP-удобрений с регулируемым соотношением питательных веществ в их составе заключается в нижеследующем. Раствор аммиачной селитры концентрации 64-71% и температуры 110-130°С известного объема смешивается с расчетной массой фосфоритной муки. В полученную смесь добавляется также расчетная масса модифицирующих минеральных добавок. При этом, в

качестве исходной жидкой системы берут раствор аммиачной селитры, получаемый по традиционной технологии производства аммиачной селитры на выходе из первой ступени выпарки. В качестве фосфатного сырья используют фосфоритную муку. Модифицирующие минеральные добавки представляют собой сульфаты железа и аммония, массы которых берут в количествах, обеспечивающих требуемые массовые соотношения питательных элементов в получаемых продуктах. Полученная суспензионная смесь тщательно перемешивается и при температуре 120-130°С подается на форсунки, а оттуда распыляется в барабан-гранулятор, где высушивается сушильным агентом в прямоточном режиме и гранулируется.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В соответствии с агрохимическими требованиями, соотношения питательных веществ в продукционном NP-удобрений, можно задавать в виде: $N:P_2O_5 = c:d$, где c — ожидаемое содержание азота в получаемом NP-удобрении, в %; d — ожидаемое содержание P_2O_5 в получаемом NP удобрении, в %.

При известных данных о массе товарной аммиачной селитры (a) в исходном растворе аммиачной селитры концентрации 64-71%, содержания азота в нем (x) по ГОСТ 2-2013, в %, содержания P_2O_5 , в добавляемой к раствору аммиачной селитры фосфоритной муке (y) марки ФМ-2 по СТ.ТОО 930640000252-01-2011, в %, могут быть вычислены по выражениям видов:

$$M_{\text{прод}} = \frac{ax}{c}$$
;

- расчетная масса, добавляемой в раствор аммиачной селитры фосфоритной муки

$$b = \frac{M_{\text{прод}} \cdot d}{v};$$

- общая масса модифицирующих минеральных добавок, необходимая для дополнительного введения в расчетную смесь раствора аммиачной селитры и фосфоритной муки

$$M_{\rm A} = M_{\rm прод} - (a + B)$$

В целевые задачи проведенных исследований входило получение NP-удобрений с соотношениями питательных элементов в продукционных образцах N: $P_2O_5=11:11;\ 13:10;\ 19:7;\ 21:6;\ 23:5$ в %-х или соответственно в массовых соотношениях 1:1; 1,3:1; 2,7:1; 3,5:1; 4,6:1.

Экспериментальные исследования по получению NP-удобрений на основе аммиачной селитры и фосфоритной муки проводились в лабораторных условиях в ЮКГУ им. М. Ауэзова, а их опытная отработка — на опытном участке производства аммиачной селитры АО «КазАзот».

Результаты выполненных исследований, а также установленые расходные показатели исходных веществ, состав и свойства получаемых целевых продуктов, в расчете на выпуск 1 т NP-удобрения, сведены в таблицы 1-3.

ISSN 1813-1107 № 2 2020

Таблица 1 – Результаты расчетно-экспериментальных исследований

№ п/п	питательны в NP пр	ожание ых веществ, родукте гу, мас. %	питательні в NP п	ожание ых веществ, продукте иенту, мас. %	Расхождение расчетных и экспериментальных результатов, %		
	N	Р2О5 общ	N	Р2О5 общ	N	Р2О5 общ	
1	2	3	4	5	6	7	
2	11	11	11,70	11,41	+0,70	+0,41	
3	13	10	13,10	9,80	+0,10	-0,20	
4	19	7	18,00	6,71	-1,00	-0,29	
5	21	6	22,00	5,84	+1,00	-0,16	
6	23	5	22,88	4,97	-0,12	-0,03	

Таблица 2 – Расходные показатели исходных веществ в расчете на 1 т целевого продукта, содержание питательных веществ в нем

№ п/п	Расход исходных веществ				Содержание питательных веществ в продукте		Содержание питательных элементов в целевом продукте	Массовые соотношения питательных элементов целевом продукте	
	AC	H ₂ O	ΦМ	Мине- ральная добавка	N, в АС,	P ₂ O ₅ в ФМ,	N/ P ₂ O ₅ , B %/%	N/ P ₂ O ₅	
	T	T	Т	Т	Т	T			
1	1	2	3	4	5	6	7	8	
2	0,320	0,131	0,647	0,033	0,110	0,109	11/11	1/1	
2	0,378	0,154	0,588	0,034	0,130	0,099	13/10	1,3/1	
3	0,552	0,225	0,412	0,036	0,189	0,070	19/7	2,71/1	
4	0,610	0,249	0,353	0,037	0,209	0,060	21/6	3,5/1	
5	0,668	0,273	0,294	0,037	0,229	0,049	23/5	4,6/1	

Таблица 3 – Состав и основные физико-химические свойства получаемых NP-удобрений

№ п/п	Массовое соотно- шение пита- тельных веществ в продукте, N:P ₂ O ₅	Содержания питательных веществ в продукте, %				Влаж- ность продук-	Проч- ность гранул про-	pH 10% pac-	Гранулометрический состав целевого продукта, масс. %	
		N	Р2О5общ	Р2О5усв	P ₂ O _{5B/p}	та, %	дукта, Н/гр	твора	1-4 мм	2-4 мм
1	2	3	4	5	6	7	8	9	10	11
2	1:1	11	11	10,20	1,30	0,28	66,84	6,42	80-92	79-81
3	1,3:1	13	10	7,00	1,28	0,28	8,70	6,40	90-93	80-85
4	2,7:1	19	7	6,60	1,20	0,27	8,06	6,27	94-98	86-90
5	3,5:1	21	6	4,50	1,20	0,27	8,06	6,30	94-98	90-95
6	4,6:1	23	5	4,60	1,00	0,28	12,15	6,47	94-98	92-97

В условиях проведенных исследований анализ состава и свойств композиционных составляющих и полученного удобрения проводился по методикам, приведенным в нормативной документации на удобрения:

- содержание азота общего в NP удобрении по ГОСТ 30181.6-94;
- содержания P_2O_{506ii} ; P_2O_{5ycB} ; $P_2O_{5b/p}$ в NP удобрении по ГОСТ 20851.2-75;
- содержание влаги в продукте по ГОСТ 20851.4, на влагомере Mettler Toledo
 - прочность гранул NP удобрения на приборе ИПГ 1M;
 - рН 10% раствора на приборе И-160 МИ

Как видно из таблицы 1, расчетные и экспериментальные данные хорошо согласуются. Среднее отклонение между опытными и расчетными величинами не превышает 1,0%. Из данных таблиц 2.3 также следует, что получаемые при этом NP-удобрения достаточно полно отвечают нормативным требованиям, предъявляемым к удобрительной продукции серийного производства.

Вывод. Таким образом, разработана математическая модель регулирования соотношений питательных элементов в NP-удобрительной продукции, и она, вполне обоснованно, может быть рекомендована к практическому применению.

ЛИТЕРАТУРА

- [1] Российская Федерация, патент №2216526; МПК С05В 11/06 (2006.01), С05G1/00 (2006.01). Абрамов О.Б., Способ получения сложного NPK-удобрения с регулируемым соотношением питательных веществ. №2002125154/12, Заявл. 19.09.2002; Опубл. 20.11.2003.
- [2] Российская Федерация, патент № 2378232; С05С 1/00 (2006.01). Абрамов О.Б., Бойков С.В., Захарова О.М., Киселевич П.В., Медянцева Д.Г. Способ получения сложного азотнофосфорного минерального удобрения. ЗАО «ЗМУ Кирово-Чепецкого химического комбината (RU), № 2008133089/15; Заявл. 11.08.2008; Опубл. 10.01.2010.
- [3] Российская Федерация, патент №2626947; МПК С01С 1/00 (2006.01), С05С 1/00 (2006.01), А01Р 21/00 (2006.01). Туголуков А.В., Валышев Д.В., Елин О. Л. Фосфор калий азот содержащее NРК удобрение и способ получения гранулированнного фосфоркалий-азотсодержащего NРК-удобрения. АО «Минерально-химическая компания «ЕвроХим» (RU), № 2016107776; Заявл. 03.03.2016; Опубл. 02.08.2017.
- [4] Овчинников Л.Н., Тюренкин С.В., Королёв Д.А. Математическая модель по регулированию химического состава гранул NK-удобрений. (Ивановский государственный химикотехнологический университет) // Изв. высших учебных заведений. Серия химия и хим. технология. 2008. 51, No. 3. C. 96-98.
- [5] Маденов Б.Д., Сейтпазаров 4.Р., Беглов Б.М. Азотнофосфорные удобрения, получаемые введением в плав аммиачной селитры фосфоритной муки Чилисайского месторождения // Хим. пром-сть. -2012.-89, № 7. C. 327-332.
- [6] Воробьева Т.А., Костина Н.В. и др. Исследования физико-механических свойств удобрений на основе аммонийной селитры с неорганическими добавками // Изв. вузов. Химия и хим. технол. -2013.-56, №11. -C.100-103.
- [7] Пак Д.Г., Маматалиев А.А., Намазов Ш.С. и др. Азотфосфоркалийсодержащие удобрения на основе аммиачной селитры, фосмуки центральных Кызылкумов, местного хлорида калия и их физико-химические и товарные свойства // Узб. Хим. ж. 2017. № 1. С. 59-66.
- [8] Ботиров Б.Б., Беглов Б.М. Пути повышения качества аммиачной селитры. (ИОНХ АНРУз) // Хим. технол. контроль и упр. -2008. -№ 6. C. 12-24.

ISSN 1813-1107 № 2 2020

[9] Павлова Г.С. Агрохимическое обслуживание сельскохяйственного производства // Техника и оборудование для села. $-2007. - \mathbb{N} 2. - \mathbb{C}$. 6-10.

[10] Ghiga R., Iovi A., Negrea P. Исследование оптимальных условий процесса получения NP удобрений с питательными микровеществами // Bui. §ti. Univ. "Folitelin." Тітцоага. Ser. Chim. ii ing. med. − 2008. − 53. № 1-2. − С. 276-278.

REFERENCES

- [1] Rossiyskaia Federacia, patent №2216526; MPK C05B 11/06 (2006.01), C05G1/00 (2006.01). Abramov O.B., Sposob poluchenie slozhnogo NPK-udobreniya s reguliruemiem sootnosheniem pitatelnieh veshchtv. №2002125154/12, Zayavl. 19.09.2002; Opubl. 20.11.2003.
- [2] Rossiyskaia Federacia, patent №2378232; MPK C05C 1/00 (2006.01). Abramov O.B., Boykov S.V., Zaharova O.M., Kiselevich P.V., Medyanceva D.G. Sposob polucheniya slizhnogo azotno-fosfornogo mineralynogo udobreniya. ZAO «ZMU Kirovo-Chepenckogo chimicheskogo kombinata» (RU), № 2008133089/15; Zayavl. 11.08.2008; Opubl. 10.01.2010.
- [3] Rossiyskaia Federacia, patent №2626947; MPK C01C 1/00 (2006.01), C05C 1/00 (2006.01), A01P 21/00 (2006.01). Tugolukov A.V., Valyshev D.V., Elin O.L. Fosfor kalii azot soderzhashchee NPK-udobrenie i spocob polucheniya granulirovannogo fosforkaliy-azotcoderzhashchego NPK-udobreniya. AO «Mineralyno-chimicheskaya kompaniya «EvroChim» (RU), № 2016107776; Zayavl. 03.03.2016; Opubl. 02.08.2017.
- [4] Ovchinnikov L.N., Tyurenkin S. V., Korolyov D. A., Matematicheskaya modely po regulirovaniyu himicheskogo granul NK- udobreniy (Ивановский государственный химикотехнологический университет) // Izv. Vysshikh uchebnykh zavedeniy. Seriya khimiya I khim. tekhnologiya. 2008. 51, №3. Р. 96-98.
- [5] Madenov B.D., Seitnazarov H.R., Beglov B.M., Azotnofosfornye udobreniya, poluchaemye vvedeniem v plav ammiachnoi selitry fosforitnoi muki Chilisaiskogo mestorozhdeniya // Chim. Promsty. 2012. 89, № 7. P. 327-332.
- [6] Vorobyeva T.A., Kostina N.V. i dr. Issledovaniya fiziko-mehanicheskih svoystv udobreniy na osnove ammoniynoi selitry s neorganicheskimi dobavkami // Izv. Vuzov. Chimiya i chim. technol. 2013. 56, № 11. P. 100-103.
- [7] Pak D.G., Mamataliev A.A., Namazov Sh.S. i dr. Azotfosforkaliysoderzhashchie udobreniya na osnove ammiachnoi selitry, fosmuki centralynyh Kyzylkumov, mestnogo chloride kaliya i ih fiziko-chimicheskie i tovarnye svoystva // Yzb. Chim.zh. 2017. №1. P. 59-66.
- [8] Botirov B.B., Beglov B.M. Puti poviesheniya kachestva ammiachoy selitry. (IONCh ANRUZ) // Chim. Tehnol. Kontroly i upr. 2008. № 6. P. 12-24.
- [9] Pavlova G.S. Agrochimicheskoe obsluzhivanie selyskohyaystvennogo proizvodstva // Tehnika i oborydovanie dlya sela. 2007. № 2. P. 6-10.
- [10] Ghiga R., Iovi A., Negrea P. Issledovanie optimalynyh usloviy processa polucheniya NP udobreniy s pitatelynymi mikrobechshestvami // Bui. §ti. Univ. "Folitelin." Тітцоага. Ser. Chim. ji ing. med. 2008. 53, № 1-2. P. 276-278.

Резюме

У. Бестереков, А. Д. Кыдыралиева, И. А. Петропавловский, А. А. Болысбек, К. Н. Ураков

ТАҒАМДЫҚ ЗАТТАРДЫҢ ҚАТЫНАСТАРЫ РЕТТЕЛІНЕТІН NP-ТЫҢАЙТҚЫШТАРЫН АЛУ БОЙЫНША ЕСЕПТІК-ТӘЖІРИБЕЛІК ЗЕРТТЕУЛЕР НӘТИЖЕЛЕРІ

Тағамдық заттардың қатынастары реттелінетін NP-тыңайтқыштарын алу бойынша есептік-тәжірибелік зерттеулер жүргізілді. Зерртеулер нәтижесінде аммиак селитрасын дәстүрлі технология бойынша өндіру өндірісінде бірінші буландыру

сатысынан кейін алынатын шоғыры 64-74% аммиак селитрасы ерітіндісі және фосфорит ұны негізінде тағамдық заттардың қатынастары реттелінетін NР-тыңайткыштарын алудын ісжүзінде мүмкіндігі анықталды. Максатты өнім құрамындағы тағамдық заттар қатынасын реттеудің математикалық моделі жасалынды. Есептіктәжірибелік тәсілдермен құрамында тағамдық заттардың қатынастары N:P₂O₅ 11:11; 13:10: 19:7: 21:6: 23:5 % немесе массалык катынаста 1:1: 1.3:1: 2.7:1: 3.5:1: 4.6:1 болатын өнімдер алынды. Қалыптық талдау әдістемелері қолданысында өнімдік заттардын курамы мен касиеттері зерттелді, максаттык өнімнін 1 т шығымына катысты бастапқы заттардың шығындық көрсеткіштері анықталды, өнім құрамындағы тағамдық заттар мөлшерлері табылды. Мақсаттық өнімдер құрамындағы тағамдық заттардың мүмкінді қатынастары туралы есептік мәліметтер тәжірибелік зерттеу нәтижелерімен жақсы үйлеседі – олардың бір-бірінен орташа ауытқуы 1 %-дан аспайды. Зерттеу нәтижерлері көрсеткендей, алынатын NР-тыңайтқыштары сапасы және негізгі физика-химиялық қасиеттері бойынша сериялы өндірілетін тыңайтқыштық өнімдерге қойылатын қалыптық талаптарға жеткілікті түрде толықтай жауап береді.

Түйін сөздер: аммиак селитрасы ерітіндісі, фосфорит ұны, тағамдық заттар, азот, фосфордың бес тотығы, NP-тыңайтқыштар.

Summary

U. Besterekov, A. D. Kydyralieva, I. A. Petropavlovskiy, A. A. Bolysbek, K.N. Urakov

RESULTS OF COMPUTATIONAL AND EXPERIMENTAL STUDIES ON THE PRODUCTION OF NP-FERTILIZERS WITH A REGULATED RATIO OF NUTRIENTS

Computational and experimental studies were carried out to obtain NP-fertilizers with a regulated ratio of nutrients. The results of the research showed the feasibility of obtaining NP-fertilizers with adjustable nutrient balance, based on 64-71% of the concentration of the solution of ammonium nitrate, obtained by traditional technology of production of ammonium nitrate after the first stage residue, as well as phosphate. A mathematical model for regulating the ratios of nutrients in the target product has been developed. Calculation and experimental methods of the products obtained with the ratio of nutrients N:P₂O₅ 11:11; 13:10; 19:7; 21:6; 23:5 in % or mass ratios 1:1; 1,3:1; 2,7:1; 3,5:1; 4,6:1. The composition and properties of production samples were studied with the use of normative methods of analysis, the consumption parameters of the initial substances per 1 ton of the target product were determined, the nutrient content of the product was found. The calculated and experimental data are in good agreement - the average deviation between the experimental and calculated values does not exceed 1.0%. From the results of the research it follows that the resulting NP - fertilizers fully meet the regulatory requirements for fertilizer products of serial production.

Key words: ammonium nitrate solution, phosphate flour, nutrients, nitrogen, phosphorus pentoxide, NP-fertilizers.