ЕҢБЕК ҚЫЗЫЛ ТУ ОРДЕНДІ «Ә. Б. БЕКТҰРОВ АТЫНДАҒЫ ХИМИЯ ҒЫЛЫМДАРЫ ИНСТИТУТЫ» АКЦИОНЕРЛІК ҚОҒАМЫ # ҚАЗАҚСТАННЫҢ ХИМИЯ ЖУРНАЛЫ ## Химический Журнал Казахстана # CHEMICAL JOURNAL of KAZAKHSTAN АКЦИОНЕРНОЕ ОБЩЕСТВО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ «ИНСТИТУТ ХИМИЧЕСКИХ НАУК им. А. Б. БЕКТУРОВА» **2** (70) АПРЕЛЬ – ИЮНЬ 2020 г. ИЗДАЕТСЯ С ОКТЯБРЯ 2003 ГОДА ВЫХОДИТ 4 РАЗА В ГОД UDC 543.51+547.415.1 #### S. ZH. ZHUMAGALIEV, M. S. MUKANOVA, I. N. ANUARBEKOVA, ZH. A. RAKHIMBEKOV A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan ## MASS SPECTRA OF SOME MONOSUBSTITUTED 1,2-DIAMINOETHANE DERIVATIVES **Abstract**. The mass spectra of monosubstituted 1,2-diaminoethane derivatives are studied and compared. The characteristics of the fragmentation of molecular ions (MI) of 1,2-diaminoethane derivatives are shown and discussed. It was established that the direction of the decomposition reaction of MI depends on the nature of the substituents. It was revealed that under conditions of electrons ionization (EI), the α - cleavage with the localization of a positive charge on the nitrogen atom is the most important, which leads to the formation of stable ammonium ions. **Keywords**: 1,2-diaminoethane, mass spectra, ammonium ions, molecular ion, electron ionization. One of the most promising and rapidly developing areas of organic chemistry is the search for new surface-active substances (surfactants) based on ethylenediamine, mono- and diethanolamine [1-4]. In this regard, the synthesis of ethylenediamine, mono - and diethanolamine derivatives and the study of their properties under conditions of electrons ionization (EI) in mass spectrometry are very relevant. In the present work, a comparative analysis of the mass spectra of some N-monosubstituted ethylenediamine derivatives (1-10) was carried out in order to identify the features of the basic regularity of molecular ion (MI) fragmentation in IE, depending on the nature of the substituents and allowing reliable mass spectrometric identification. We considered the mass spectra of alkyl, aryl, and trimethoxysilylpropyl-containing derivatives of 1,2-diaminoethane (1-10). $$H_2N$$ $1\overline{}10$ R The amino group has stronger electron-donor properties compared to hydroxyl. The positive mesomeric effect of the nitrogen atom is larger, and the negative inductive effect is smaller than that of the oxygen atom. Therefore, fragmentation processes initiated by the radical center are more characteristic for amines. In the electron-unexcited state, the charge and the unpaired electron are localized on the nitrogen atom. It should be noted that the intensity of the MI peaks is very low due to the ease of fragmentation processes. In the case of the absence of the MI peak in mass spectra, the "nitrogen rule" (if the compound contains an even number of nitrogen atoms, its molecular weight is even) [5] allows to accurately set the substances belonging to the class of amines. The full electrons ionization mass spectra of considered monosubstituted derivatives of 1,2-diaminoethane (1-10) are given in the table 1. Table 1 – Mass spectra of monosubstituted alkyl- and arylderivatives of 1,2-diaminoethane | No. | Name of compound | Mass spectrum, m/z (I relative, %) | | | |-----|---|--|--|--| | 1 | 1,2-diaminoethane | M ⁺ 60 (7), 59 (6,5), 44 (4), 43 (15), 42 (12,5), 41 (5), 40 (2,5), 31 (3), 30 (100), 29 (3), 28 (19,5), 27 (3). | | | | 2 | N-Methylethan-1,2-diamine | M ⁺ 74 (5,5), 45 (5), 44 (100), 43 (6), 42 (11), 41 (3), 30 (19), 29 (2), 28 (10,5), 27 (3), 15 (3,5). | | | | 3 | N-Ethylethan-1,2-diamine | M ⁺ 88 (3), 59 (4,5), 58 (100), 56 (3), 44 (13), 43 (3), 42 (6), 41 (2), 30 (79), 29 (8), 28 (9), 15 (2.5). | | | | 4 | N-Propylethane-1,2-diamine | M ⁺ 102 (2,5), 73 (8,5), 72 (100), 70 (2), 58 (3), 56 (4,5), 44 (39,5), 43 (27), 42 (12), 41 (17), 39 (3,5), 30 (83), 28 (13), 27 (7), 18 (2,5). | | | | 5 | N-Isopropylethane-1,2 diamine | M ⁺ · 102 (0,5), 73 (3), 72 (57), 70 (3), 58 (10), 56 (2,5), 44 (24), 43 (15), 42 (7), 41 (9), 39 (2,5), 30 (100), 28 (7,5), 27 (5,5), 15 (2). | | | | 6 | N-(2-Aminoethyl)ethane-
1,2-diamine | M ⁺ · 103 (0,3), 74 (4), 73 (64), 57 (2), 56 (10,5), 45 (3,5), 44 (100), 43 (8), 42 (12), 41 (3), 30 (20), 29 (2), 28 (7,5), 27 (2), 18 (3). | | | | 7 | N,N-Bis(aminoethyl)ethane-
1,2- diamine | M ⁺ 146 (ab.), 142 (7), 125 (2), 116 (10,5), 112 (2), 100 (2,5), 99 (20), 98 (9,5), 97 (8), 87 (4), 86 (3), 85 (6), 84 (2), 83 (2), 74 (3), 73 (41), 71 (3), 70 (13), 69 (2), 68 (2), 61 (6), 58 (9), 57 (6), 56 (27), 55 (3), 54 (2), 45 (4), 44 (100), 43 (9), 42 (16,5), 41 (4), 30 (26,5), 29 (5.5), 28 (12), 27 (3), 18 (3). | | | | 8 | N-Phenylethane-1,2-diamine | M ⁺ 136 (15), 107 (20), 106 (100), 104 (4), 79 (14,5), 78 (6), 77 (26), 65 (3), 52 (3), 51 (13,5), 50 (4), 42 (2), 39 (4,5), 30 (20), 28 (7), 27 (2,5). | | | | 9 | N-Benzylethan-1,2-diamine | M ⁺ 150 (1), 121 (5), 120 (44), 118 (2,5), 106 (6), 29 (9), 91 (100), 89 (2), 77 (2), 65 (8,5), 63 (2), 51 (2,5), 44 (3), 42 (2), 39 (3), 30 (11,5), 28 (3,5). | | | | 10 | N-[3-
(Trimethoxysilyl)propyl]eth
ane-1,2-diamine | M ⁺ 222 (ab.), 193 (4), 192 (27,5), 162 (5), 161 (12,5), 160 (100), 159 (2), 148 (3), 132 (2), 131 (4,5), 130 (30,5), 121 (15.5), 118 (3), 91 (15), 90 (2), 73 (8), 61 (5), 59 (6.5), 44 (19), 43 (5,5), 42 (3), 41 (3), 32 (20), 31 (28,5), 30 (11), 29 (13), 28 (6), 18 (3), 15 (6). | | | The stability of MI (W_{MI}) to EI, as well as the intensity of the main characteristic fragment ions (F_1 - F_5) from the total ion current and the retention index (i_u) are given in the table 2. Table 2 – Stability of molecular ions (W_{MI}) and characteristic fragment ions (F_1 - F_5) from the total ion current during electrons ionization (EI) of some monosubstituted alkyl- and arylderivatives of 1,2-diaminoethane (1-10) | №
comp | W_{MI} | m/z (F ₁ -F ₅) | | | | | Retention index | | |---|----------|---|--|--|---|--|--------------------------------|--| | r | | F ₁ | F_2 | F ₃ | F ₄ | F ₅ | RI (i _u),
[7,8] | | | 1 | 3,7 | [M-H] ⁺
59(3,4) | [M-NH ₃] ^{+.}
43(7,9) | [M-NH ₄] ⁺
42(6,5) | CH ₂ =N ⁺ H ₂
30(52,6) | H ₂ CN
28(10,5) | 600÷
612 | | | 2 | 3,0 | $CH_3N^+H=$ $44(55,5)$ | [M-NH ₂ =] ^{+.}
43(3,0) | [C ₂ H ₄ N] ⁺
42(6,1) | CH ₂ =N ⁺ H ₂
30(10,2) | H ₂ CN
28(5,8) | 761 | | | 3 | 1,2 | $C_2H_5N^+H=58(39,2)$ | C ₂ H ₆ N ⁺
44(5,0) | C ₂ H ₄ N ⁺
42(2,3) | CH ₂ =N ⁺ H ₂
30(30,9) | H ₂ CN ⁺
28(3,4) | 860 | | | 4 | 0,7 | $C_3H_7N^+H=72(29,8)$ | C ₂ H ₆ N ⁺
44(11,8) | C ₂ H ₅ N ⁺
43(8,0) | CH ₂ =N ⁺ H ₂
30(24,7) | H ₂ CN ⁺
28(3,8) | 960 | | | 5 | 0,2 | i-C ₃ H ₇ N ⁺ H=
72(21,9) | C ₃ H ₈ N ⁺
58(3,8) | C ₂ H ₆ N ⁺
44(9,2) | C ₂ H ₅ N ⁺ ·
43(5,7) | CH ₂ =N ⁺ H ₂
30(38,4) | 896 | | | 6 | 0,1 | C ₃ H ₈ N ₂ ⁺
73(25,6) | C ₃ H ₈ N ⁺
56(4,2) | C ₂ H ₆ N ⁺
44(40) | C ₂ H ₄ N ⁺
42(4,8) | CH ₂ =N ⁺ H ₂
30(8) | 1025÷
1028 | | | 7 | _ | [M-4H] ⁺ .
142(1,8) | *C ₅ H ₁₄ N ₃ +
116(2,7) | *C ₅ H ₁₁ N ₂ +
99(5,1)
NH ₂ CH ₂ CH ₂
N+H=C*H ₂
73(10,5) | *C ₃ H ₆ N ⁺
56(6,9)
*C ₂ H ₆ N ⁺
44(25,6) | *CH ₂ =N ⁺ H ₂
30(6,8) | 1501 | | | 8 | 6,0 | $C_6H_5N^+H= CH_2 106(37)$ | C ₆ H ₇ ⁺
79(5,4) | C ₆ H ₅] ⁺ 77(9,6) | C ₄ H ₃] ⁺ 51(5) | CH ₂ =N ⁺ H ₂
30(7,4) | 1329÷
1335 | | | 9 | 1,4 | C ₆ H ₅ CH ₂ N ⁺ H
=CH ₂
120(20) | $C_6H_5CH= N^+H_2 $ 106(2,7) | C ₇ H ₇] ⁺
91(45,4) | C ₅ H ₅] ⁺
65(3,8) | CH ₂ =N ⁺ H ₂
30(5) | 1434 | | | 10 | - | [M-CH ₂ NH ₂] ⁺
192(6,4) | [M-
CH ₂ NH ₂] ⁺
CH ₃ OH
160(23,8) | -O-SiH=
CH ₂ CH ₂ NH=
CH ₂
130(7.1) | Si(OCH ₃)] ⁺
121(3.7) | -O-SiH=O-
91(3.5) | 1396 | | | $^*F_1'-116, F_1''-99, F_2-73, F_3-56, F_3-44, F_5-30 (7).$ | | | | | | | | | Diamines under EI are fragmented by the same rule as monoamines [6-8]. In mass spectra of monoamines MI peaks are usually little intense or completely absent. The main process of fragmentation carries out in the case of 1,2-ethylenediamine (1): the α – cleavage of C – C bond with formation of the ammonium ion CH₂=N⁺H₂ at m/z 30 (I_{relative}=100%, Table 1) and with localization of the radical ion center on the nitrogen atom, providing high characteristic mass spectra. The analogous maximum peak in the mass spectra of N-methylethan-1,2-diamine (2) is due to the α – cleavage of C – C bond leading to the ammonium ion H₃C-NH⁺=CH₂ at m/z 44 (I_{relative} = 100%). The mass spectrum of N-ethylethan-1,2-diamine (3) contains two very intense peaks at m/z 30 and 58. The α - cleavage of the C – C bond between nitrogen atoms is the main process of fragmentation and at the same time the charge can be localized on the right (F₁) and left part (F₂) of the molecule: $$\begin{bmatrix} H_{2}N & H_{2}C & H_{2}N &$$ Moreover, the first fragmentary ion F at m/z 58 is more stable due to the inductive influence of the ethyl radical. In terms of mass spectrometry, N-propylethane-1,2-diamine (4) is similar to N-ethylethane-1,2-diamine (3). The dissociation of the C_1-C_2 bond leads to two characteristic fragmentary ammonium ions CH_3 - CH_2 -CH-N+H= CH_2 (m/z 72) and CH_2 =N+ H_2 (m/z 30). Comparison of the mass spectra of the isomers of N-propyl-, N-isopropylethane-1,2-diamines (4,5) shows a significant difference in the relative intensity of the main fragments and this fact can be used for mass spectrometric identification of the corresponding isomeric pairs. During the decomposition reaction of MI of N- (2-aminoethyl) ethane-1,2-diamine (6), the main direction of MI fragmentation is the sequential elimination of the radicals CH_2NH_2 (F_1 , m/z 73) and $NH=CH_2$ (F_2 , m/z 44). It should be noted that in the mass spectra of the amine (6), the peak MI (M^+ 103) becomes less noticeable ($I_{relative}=0,3\%$). Substitution of the 2-aminoethyl group ($CH_2CH_2NH_2$) in the N- (2-aminoethyl)ethane-1,2-diamine molecule (6) with the $CH_2CH_2NHCH_2CH_2NH_2$ group, as expected, radically changes the fragmentation of MI. With increasing the molecular weight and the number of amino groups in diamines, the peak of MI is not observed, that makes it difficult to establish their composition. However, the mass spectra of N, N-Bis(aminoethyl)ethane-1,2-diamine (7) presents characteristic fragment ions with high intensity at m/z 99, 73, 44, which allow to determine molecular weight of the diamine (7), as well as the direction of MI fragmentation. The introduction of the phenyl group to the nitrogen atom increases the intensity of the MI peak (8, M^+ 136, Table 1.2) and facilitates the α -cleavage of the C-C bond between the nitrogen atoms. Such a process leads to a very stable characteristic fragment ion F_1 at m/z 106 with elimination of CH_2NH_2 from MI (Scheme 1). In the mass spectrum of amine (9) gives a low intense MI peak at m/z 150 (9) and two more intense characteristic peaks at m/z 120 and 91 for the $[M-CH_2NH_2]^+$ and $C_6H_5C^+H_2$ ions, respectively. Introduction of 3-(trimethoxysilyl)propyl into the ethylendiamine molecule (1) gives a definite effect on nature of the MI fragmentation (10). The MI peak is absent in mass-spectrum of the compound (10). However, the spectrum gives significant peaks at m/z 192, 130, 121, and 91, as well as a maximum peak at m/z 160 belonging to characteristic ammonium: [(H₃CO)₃Si-(CH₂)₃N⁺H=CH₂] (m/z 192), [(H₃CO)₂Si=CH-CH₂-CH₂-N⁺H=CH₂] (m/z 160), [H₃CO-SiH=CHCH₂CH₂-N⁺H=CH₂] (m/z 130) and oxonium ions: [(H₃CO)₂Si=O⁺-CH₃] (m/z 21), H₃C-SiH=O⁺-CH₃ (m/z 91), which confirm the structure, composition and molecular weight of the compound (10). It should be noted that the positive charge remains on the nitrogen and oxygen atoms in the following sequential processes: M⁺ '222 \rightarrow m/z 192 \rightarrow m/z 160 \rightarrow m/z 130 and M⁺ '222 \rightarrow m/z 121 \rightarrow m/z 91. **1,2-Diaminoethane** (1). The mass spectrum gives the MI peak (M $^+$ '60) with an intensity of 6.8% (Table 1) and with the stability $W_{MI} \approx 3.7$ to EI (Table 2). The spectrum presents a highest peak F_4 [M-CH₂NH₂] $^+$ at m/z 30 ion (Scheme 1), arising from the α -cleavage of the C $^-$ C bond. In addition, the mass spectra of compound (1) gives following significantly intense peaks of ammonium ions: NH₂-CH₂-CH=N $^+$ H₂ (m/z 59), H₂C=CH-N $^+$ H₃ (m/z 44), H₂C=C=N $^+$ H₂ (m/z 42), HN $^+$ =CH (m/z 28) and of cation-radical of etenamine [CH₂=CH-NH₂] $^+$ at m/z 43 (Scheme 1). **N-Methylethane-1,2-diamine (2)**. The mass spectrum of the amine (2) presents a MI peak (M $^+$ '74) at m/z 74 with intensity of 5.4% and stability to IE $W_{MI} = 3.0\%$. The spectrum gives also the maximum peak at m/z 44, arising from the formation of the ammonium cation (H $_3$ C-N $^+$ H=CH $_2$) during elimination of the CH $_2$ NH $_2$ group from MI (2) due to α -cleavage. There are with a resonantly stabilized peak of ammonium ion F $_1$ at m/z 44, also a noticeable intense peak of the ammonium ion F $_2$ (H $_2$ C=N $^+$ H $_2$) at m/z 30 (Scheme 1). **N-Ethylethanediamine-1,2** (3). Mass spectrum of diamine (3) is similar to spectrum of the homolog (2), differ only in the intensity of MI, and fragment ions (F_1 , F_2). MI peak (M^+ '88) has very low intensity ($I_{otn} = 0.3\%$, $W_{MI} \approx 1.2$; Table 1,2). In contrast to analogue (2), the ammonium characteristic ion F_4 (m/z 30) is formed by an almost equally high probability with F_1 ion at m/z 58 (Scheme 1). This is due to the formation of ammonium ion $CH_2 = N^+H_2$ (m/z 30) from two ions: from MI, arising from α -cleavage and from the F_1 ion (m/z 58) due to the elimination of the ethyl radical at the nitrogen atom with migration of H- atom to nitrogen and the emission of ethene. **N-Propylethanediamine-1,2** (4). Unstable MI (M⁺·102) by the decomposetion reaction leads to three ammonium ions F_1 (m/z 72), F_2 (m/z 44) and F_5 (m/z 30). The peaks of the arising ions (F1-F5) are most intense (Table 1). The maximum peak among them is like the homologues 2,3 corresponds to the ammonium ion F_1 at m/z 72 (CH₃CH₂CH₂N⁺H₂=CH₂), arising α -cleavage of the C-C bond between the nitrogen atoms. The processes in F₁ ions with the migration of the H-atom to nitrogen and the emissions of alkenes leads to the F₂ and F₅ ions (Scheme 1). Scheme 1 – The mechanism of MI fragmentation of N-methyl-, ethyl-, propyl-, isopropylethanediamines (2-5) and 1,2-ethanediamine **N-Isopropylethanediamine-1,2** (5). The α -cleavage with the formation of ammonium ions $(H_3C)_2CH-N^+H=CH_2$ at m/z 72 and $CH_2=N^+H_2$ at m/z 30 destabilizes the MI of N-isopropylethanediamine (5), the peak of which is barely noticeable in MS (Table 1, 2). The MI isomers 4 and 5 are similar by the nature of the decomposition reaction (Scheme 1). However, comparing their mass spectrums shows that the intensity of the characteristic fragment ions F_1 , F_3 and F_5 at m/z 74, 44 and 30, respectively, is very different (Table 1,2). **N-** (2-Aminoethyl)ethanediamine-1,2 (6). The introduction of ethylamine groups to the molecule of ethanediamine greatly reduces the intensity of the MI peak and its fragmentation leads to the formation of stable ammonium ions F_1 ($H_2N-CH_2-CH_2-N^+H=CH_2$) at m/z 73 and F_3 ($H_3C-N^+H=CH_2$) at m/z 44. The formation of these ions is due to the occurrence of two main fragmentation processes, ensuring a high characteristic nature of mass spectrum: the elimination of the CH_2NH_2 at the α -C-atom between nitrogen atoms; the regrouping process in F_1 ions with the migration of the H-atom and the emission of the CH_2NH (Scheme 2). Mass spectrum of diamine (6) presents significant peaks at m/z: 86, 56, 30 and 28 (Table 1), due to the ions $[M-NH_3]^+$, $[M-NH_3-CH_2NH_2]^+$, $H_2N^+=CH_2$ and H_2N^+C , respectively. Scheme 2 – The mechanism of MI fragmentation of N-(2-aminoethyl)ethanediamine-1,2 (6) and N_I , N_2 -Bis (aminoethyl)ethanediamine-1,2 (7) **N-(2-Ethylethanediamino)ethanediamine** (7). A somewhat unexpected fragmentation is observed in the case of N-(2-ethylethanediamino)ethanediamine (7). Its mass spectrum practically does not contain a MI peak (M⁺·146). However, there are peaks of characteristic fragment peaks: [M-CH₂NH₂]⁺ (m/z 116), [M-CH₂NH₂-NH₃]⁺ (m/z 99), [H₂N-CH₂CH₂N⁺H=CH₂] (m/z 73) and [H₂N-CH₂-CH₃]⁺ \leftrightarrow H₂N<| (m/z 44), confirming the structure and molecular weight of the ethanediamine derivative (7) (Table 1.2, Scheme 2). The formation of a significant F₁ ion (m/z 116) is related to the main process of MI (7) fragmentation – the elimination of CH₂NH₂, similarly to diaminoethane derivatives (1-6). This F₁ ion emits NH_2 molecules by the formation of the F_2 ion ([$CH_2=N^+H-CH_2CH_2NH-CH=CH_2$]) at m/z 99 with an intensity of peak -20% (Table 1.2). An intense peak at m/z 73 ($I_{relative}=41\%$) corresponds to the F_3 ion by splitting of the molecule (7). In the mass spectrum a maximum peak of the ammonium ion F_4 ($I_{relative}=100\%$), the formation of which probably carries out from MI (7) from the primary, secondary ammonium ions (F_1 - F_3). It should be noted that the noticeable MI peak ion at m/z 142 is due to the emission of two H_2 molecules from MI (7). N-Phenylethanediamine-1,2 (8). The introduction of phenyl group into the ethanediamine molecule (1) increases the stability of MI (8) to EI (Table 1.2) and its intensity in mass spectrum reaches $I_{relative}$ = 15% (Table 1). The most maximum peak of ammonium ion C_6H_5 -N⁺H=CH₂ (F₁) at m/z 106 is formed as a result of α-cleavage of C-C bond, and also significant ammonium ion CH_2 =N⁺H₂ (F₅) at m/z 30, due to charge localization on the N atom of the unsubstituted part of ethanediamine (Scheme 3). The fragment F₁ ion loses HCN molecule as a result of the secondary regrouping process (F₂, with m/z 79). The mass spectrum (8) presents an intense peak of the phenyl cation (F₃) at m/z 77, as well as significant peaks of "aromatic series" ions $[C_5H_5]^+$, $[C_4H_3]^+$ and $[C_3H_3]^+$ at m/z 65, 51, 39 that indicates the presence of a phenyl substitution in the molecule. The mechanism of formation of characteristic ions is presented in Scheme 3. Scheme 3 – The mechanism of MI fragmentation of N-Phenylethanediamine-1,2 (8) and N-Benzylethanediamine-1,2 (9) **N-Benzylethanediamine (9).** As in the case of N-phenylethanediamine (8), the main directions of fragmentation of N-benzylethanediamine-1,2 (9) are initiated by unpaired electrons of the nitrogen atom. All the most intense peaks in mass spectrum of compound (9) are due to ions formed as a result of primary α -cleavage or secondary regrouping, because the nitrogen atom has a high tendency to retain charge. However, the replacement of the phenyl radical in the molecule of N-phenylethanediamine (8) with a benzyl destabilizes the stability of MI to EI and significantly changes the picture of mass spectrum of diamine (9). For this compound (9), the benzyl cleavage becomes the dominant fragmentation process with the formation of a resonantly stabilized benzyl or tropyl cation by the next mechanism: Thus, the main fragmentation process of unstable MI (M^+ '150) is associated with the successive elimination of CH_2NH_2 (F_1 , with m/z 120) and $NH=CH_2$ (F_3 , with m/z 91) radicals with the formation of a resonantly stabilized tropyl cation (Table 1.2, Scheme 3). N-[3-(Trimethoxysilyl)propyl]ethanediamine-1,2 (10). There is no MI peak (M $^+$ '222) in mass spectrum of the compound (10) (Table 1,2). However, mass spectrum gives an intense peak of the characteristic ammonium ions F_1 at m/z 192, arising from α -cleavage of the C-C bond between nitrogen atoms (cleavage of the CH_2NH_2 radical). The mass spectrum presents a more intense peak of the stable ammonium ion F_2 at m/z 160, which confirm structure and molecular weight of the compound (10). Scheme 4 shows the main directions of MI fragmentation (120) and the basic processes characteristic of the decomposition reaction of the molecule of diamine (10). In MS the most intense peaks of characteristic ions F_1 (m/z 192), F_2 (m/z 160) and F_3 (m/z 130) are observed, which are connected by successive processes of elimination of particles: CH_2NH_2 , CH_3OH and CH_2O from MI (10). It is shown that the CH_2NH_2 radical is ejected in the same way as ethanediamines (1–9), then the CH_3OH molecule (F2) are eliminated from this F_1 ion, then the most stable ammonium ion F_2 emits a molecule of CH_2O due to the regrouping and migration of the H atom with the formation of the third ammonium ion F_3 (Scheme 4). Scheme 4 – The mechanism of MI fragmentation of N- [3- (trimethoxysilyl)propyl]ethanediamine-1,2 (10) The MS of diamine (10) presents the significant peaks at m/z 121, 91, 44, 32, 31, corresponding to oxonium ions F4 (m/z 121), F_5 (m/z 91) and ammonium ion F_6 CH₃N⁺H=CH₂ (m/z 44) and $[H_3$ C-OH]⁺ (m/z 32) ions, $[H_2$ C=O⁺H] (m/z 31). Thus, the cleavage of the radical CH₂NH₂C is characterized with the formation of a stable ammonium ion for the considered monosubstituted derivatives of 1,2-diaminoethan. The stability of MI to EI is very low, with the exception of N-phenylethanediamine-1,2. The main processes of MI fragmentation are associated with the formation of stable characteristic ammonium ions, which allow them to successfully carry out mass spectrometric interpretation. #### REFERENCES [1] Anuarbekova I.N., Akimbaeva N.O., Vizer S.A., Yerzhanov K.B. Selective monoalkylation and dithiocarbonylation of ethylenediamine // Chemical Journal of Kazakhstan. 2018. № 2. P. 28-35. - [2] Akimbaeva N.O., Vizer S.A., Seilkhanov T.M., Yerzhanov K.B. Alkylation of sodium ethane-1,2-diyldicarbamodithioate // Chemical Journal of Kazakhstan. 2018. № 2. P. 172-180. - [3] Erzhanov, K. B., Vizer, S.A., Sycheva, E.S. Creation of innovative plant growth regulators of broad-spectrum action. Almaty, 2017. 158 p. - [4] Akimbaeva N.O., Vizer S.A., Anuarbekova I.N., Seylkhanov T.M., Erzhanov K.B. Study of "green" methods of monoethanolamine N-alkylation // Chemical Journal of Kazakhstan. 2016. № 4. P. 302-308. - [5] A.T. Lebedev Mass spectrometry in organic chemistry. M.: Technosphere, 2015. 704 p. - [6] Mass-spectral Libarary NIST. 2002.2 - [7] Andersson A., Jurel S., Shymaska M., Golender L. Gas-liquid chromatography of some aliphatic and heterocyclic mono- and polyfunctional amines. Polarity and unpolar stationary phases // Latv. PSR Zinat. Akad, Vestis Kim.Ser. 1973. P. 51-63. - [8] Grautzsch R., Zinn P. Using the incremental models to estimate the number of aromatic compounds # Chromatographia. 1996. Vol 43 (3/4). P. 163-176. #### Резюме Жумагалиев С.Ж., Мұқанова М.С., Әнуарбекова И.Н., Рахимбеков Ж.А. #### 1,2-ДИАМИНЭТАННІҢ КЕЙБІР БІРОРЫНБАСҚАН ТУЫНДЫЛАРЫНЫҢ МАСС-СПЕКТРЛЕРІ Этандиаминнің он бірорынбасқан туындыларының масс-спектрлері қарастырылып, олардың салыстырмалы сараптамасы жүргізілген. Олардың молекулалық иондарының фрагментация ерекшеліктері сипатталған және көрсетілген. Молекулалық иондардың ыдырау реакциясының бағыты орынбасарлардың табиғатына тәуелділігі анықталған. Электронмен ионизациялау жағдайда ең маңызды болып α-бөлініуі және оң заряд N атомында шоғырланатыны және осы процестер әсерінде тұрақты аммоний иондарының пайда болатыны анықталған және көрсетілген. **Түйін сөзер:** 1,2-диаминоэтан, масс-спектр, аммоний иондар, молекулалық ион, электрондармен ионизациялау. #### Резюме Жумагалиев С.Ж., Муканова М.С., Ануарбекова И.Н., Рахимбеков Ж.А. ### МАСС-СПЕКТРЫ НЕКОТОРЫХ МОНОЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ 1,2-ДИАМИНОЭТАНА Рассмотрены масс-спектры монозамещенных производных 1,2-диаминоэтана и проведен их сравнительный анализ. Показаны и обсуждены особенности фрагментации молекулярных ионов производных 1,2-диаминоэтана. Установлено, что направление реакции распада молекулярных ионов зависит от природы заместителей. Выявлено, что в условиях ионизации электронами наиболее важным является α-разрыв с локализацией положительного заряда на атоме азота, который приводит к образованию устойчивых аммониевых ионов. **Ключевые слова:** 1,2-диаминоэтан, масс-спектр, ионы аммония, молекулярный ион, электронная ионизация.