ЕҢБЕК ҚЫЗЫЛ ТУ ОРДЕНДІ «Ә. Б. БЕКТҰРОВ АТЫНДАҒЫ ХИМИЯ ҒЫЛЫМДАРЫ ИНСТИТУТЫ» АКЦИОНЕРЛІК ҚОҒАМЫ

ҚАЗАҚСТАННЫҢ Химия Журналы

Химический Журнал Казахстана

CHEMICAL JOURNAL of KAZAKHSTAN

АКЦИОНЕРНОЕ ОБЩЕСТВО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ «ИНСТИТУТ ХИМИЧЕСКИХ НАУК им. А. Б. БЕКТУРОВА»

1 (69)

ЯНВАРЬ – МАРТ 2020 г. ИЗДАЕТСЯ С ОКТЯБРЯ 2003 ГОДА ВЫХОДИТ 4 РАЗА В ГОД УЛК 547.823.241.07+631

К. А. ДОСЖАНОВА, А. Б. КУАНДЫКОВА, Н. О. МЫРЗАХМЕТОВА. К. О. КИШИБАЕВ

Казахский национальный женский педагогический университет, Алматы, Республика Казахстан

СИНТЕЗ НОВЫХ α-АМИНОФОСФОНАТОВ В УСЛОВИЯХ РЕАКЦИИ ПУДОВИКА

Аннотация. Взамодействием 1-этинил-1-аминоциклогексана с 3,4-диметоксибензальдегидом и п-аминодиметилбензальдегидом получены соответствующие основания Шиффа, фосфонилированием которых диэтифосфористой кислотой в условиях реакции Пудовика выделены и охарактеризованы новые α-аминофосфонаты. Состав и строение синтезированных соединений исследованы и подтверждены иетодами ИК-, ЯМР¹Н- и ³¹Р-спектроскопии.

Ключевые слова: α-аминофосфонаты, реакция Пудовика, бензальдегиды, диэтилфосфит, основания Шиффа, ИК-, ЯМР спектроскопия.

Несмотря на впечатляющие успехи, достигнутые в области синтеза и изучения свойств α -аминоалкилфосфоновых кислот, соединения данного класса постоянно привлекают внимание исследователей разнообразием путей химических превращений и перспективой использования их в различных областях науки и техники, что стимулирует разработку новых способов синтеза их полифункциональных производных [1-6].

Анализ мировой химической научной и патентной литературы показывает, что в последние десятилетия значительно возрос интерес исследователей к проблеме синтеза, строения и химических превращений шиффовых оснований [7-9].

Важным примером нуклеофильного присоединения по двойной C=N связи азометинов является взаимодействие оснований Шиффа с гидрофосфорильными соединениями, содержащими активную связь P-H. При этом гидрофосфорильные соединения претерпевают α-аминоалкилирование, приводящее к образованию аминоалкил(арил)-фосфонистых и фосфиновых кислот и их производных солей. Интерес к этим соединениям обусловлен тем, что некоторые из них обнаружены в живой природе и проявили биологическую активность. Реакция введена в синтетическую практику А.Н. Пудовиком [7].

Получение α-аминофосфонатов взаимодействием гидрофосфорильных соединений с основаниями Шиффа (реакция Пудовика, где диалкилфосфиты добавляются к соединениям, содержащим иминосвязь C=NR) привлекает простотой выполнения. Предпочтение «иминного метода» обусловлено стремлением достичь максимального разнообразия функциональных групп при атоме азота и углерода в потенциальном аминофосфонате и создании условий для максимальной степени стереоселективности при-

ISSN 1813-1107 № 1 2020

соединения гидрофосфорильных соединений по C=N связи. Реакция идет в растворе или конденсированной фазе в присутствии кислых, основных катализаторов или без них, при простом смешении реагентов [8-10].

В тоже время, исследование кинетики и механизма этой реакции проведено на ограниченном количестве работ. В работах [10-11] изучены кинетика и механизм указанного варианта реакции Пудовика на примере взаимодействия диметилфосфита с рядом N-изопропилбензилиденаминов. Авторами отмечено, что переход от электронодонорных заместителей в ароматическом ядре N-изопропилбензилиденаминов к электроноакцепторным увеличивает константу скорости реакции образования аминофосфонатов на порядок, что свидетельствует о нуклеофильном механизме присоединения. Существенное отрицательное значение энтропии активации позволяет заключить, что реакция протекает через высокоорганизованное четырехчленное переходное состояние, в котором атом азота играет роль внутреннего основания, разрыхляя P-H-связь и, таким образом, способствуя нуклеофильной атаке фосфора на углеродный атом имина:

$$(RO)_{2}PHO + Ar^{T}CH^{-}N^{T}R$$

$$= Ar^{T}CH^{-}N^{T}R$$

$$= Ar^{T}CH^{-}NH^{T}R$$

$$= Ar^{T}CH^{T}NH^{T}R$$

$$= Ar^{T}CH^{T}NH^{T}R$$

С целью получения новых аминофосфонатов алициклического ряда (7,8), которые представляют интерес в качестве потенциальных биологически активных веществ, разработаны оптимальные условия их синтеза через основания Шиффа. В качестве карбонильных компонентов были использованы вератровый альдегид (2) и n— аминодиметилбензальдегид (3).

HC
$$\equiv$$
 C \downarrow NH₂ \downarrow HC \equiv C \downarrow NH₂ \downarrow NH₂ \downarrow HC \equiv C \downarrow NH₂ \downarrow NH₂ \downarrow NH₂ \downarrow NH₃ \downarrow NH₄ \downarrow NH₄ \downarrow NH₅ \downarrow NH₅ \downarrow NH₆ \downarrow NH₇ \downarrow NH₇

Конденсацию 1-этинил-1-аминоциклогексана (1) с ароматическими альдегидами (2,3) проводили в безводном бензоле в присутствии каталитических количеств п-толуолсульфокислоты с одновременной азеотропной отгонкой воды. Контроль за ходом реакции осуществляли методами тонкослойной хроматографии (TCX). При проведении реакции отмечалось влияние природы исходных альдегидов на выход шиффовых оснований

(5,6). Наибольший выход (74%) соответствующего азометина (6) наблюдается в случае п— аминодиметилбензальдегида (3), а при взаимодействии 1-этинил-1-аминоциклогексана (1) с 3,4-диметокси-бензальдегидом (2) основание (5) образуется с 61%-ным выходом. Основания Шиффа (5,6) представляют собой маслообразные вещества, очистка которых осуществлялась колоночной хроматографией на оксиде алюминия.

Строение соединений ($\mathbf{5,6}$) подтверждено данными элементного анализа и ИК-спектрами. В ИК-спектрах ($\mathbf{5,6}$) имеются интенсивные полосы поглощения в области 1600-1660 см⁻¹, соответствующие валентным колебаниям C=N связи и замещенного ароматического кольца. О структурах, отвечающих азометинам, можно говорить по отсутствию полос поглощения первичной аминной (NH_2) и карбонильной (C=O) групп в соответствующих областях спектра. Физико-химические характеристики азометинов ($\mathbf{5,6}$) приведены в экспериментальной части.

Таким образом, в результате исследования реакции конденсации 1-этинил-1-аминоциклогексана (1) с ароматическими альдегидами синтезированы новые основания Шиффа алициклического ряда (5,6) перспективные как потенциальные биологически активные вещества, так и в качестве синтонов для получения полифункциональных биологически активных соединений.

Иминная группа, являясь изоэлектронным аналогом карбонильной группы, обладает высокой реакционной способностью, в том числе в реакциях нуклеофильного присоединения.

В дальнешем исследована возможность получения аминофосфонатов в двухкомпонентной системе: основание Шиффа (5,6) – диэтилфосфит (4).

Взаимодействие соответствующих азометинов (5,6) и диэтилфосфита (4) проводилось в безводном бензоле при перемешивании в течение 3 ч при комнатной температуре с добавлением каталитических количеств свежеприготовленного насыщенного раствора этилата натрия. В результате с выходом 67,0 и 79% (соответственно) были выделены и охарактеризованы α -аминофосфонаты (7,8).

В ИК-спектрах α -аминофосфонатов (7,8) наблюдаются характеристические полосы поглощения P-аминоалкилированного фрагмента, которые соответствуют валентным колебаниям P=O (1262-1309 см⁻¹), P-O-C (1075-1095см⁻¹), NH (3221-3269 см⁻¹) групп, и отсутствуют полосы поглощения C=O, NH₂, C=N, PH-связей. Присутствуют полосы валентных колебаний – C=C- (2104-2820 см⁻¹), =CH- (3228-3356 см⁻¹).

Данные ЯМР¹Н-спектров дополнительно подтверждают строение α -аминофосфонатов (**7,8**). Характерной особенностью ЯМР¹Н- спектров α -аминофосфонатов (**7,8**) являются сигналы двух этоксильных групп фосфорильного фрагмента, лежащих в области 1.76-1.81м.д. (6H, т, CH₃) м.д. в виде триплета (РОСН₂СН₃) и в области 3.86-3.96м.д. (РОСН₂) в виде квадруплета. Протоны циклогексильного фрагмента резонируют в области 1.68-1.72 м.д. в виде сложного мультиплета.

ISSN 1813-1107 № 1 2020

В ЯМР¹Н спектрах (**7,8**) в области 2.67 и 2.73 м.д. проявляются дублеты протона NH-группы, а при 6.86 -7.64 м.д. наблюдается мультиплетный сигнал протонов ароматического ядра альдегидного фрагмента. Химический сдвиг CH протона проявляется в виде синглета при 2,38 м.д. и 2,25 м.д. соответственно. ЯМР³¹Р спектры полученных α -аминофосфонатов (**7,8**) характеризуются сигналами в области 20,18 и 22.56 м.д., соответствующими диэтоксифосфорильной группе.

Индивидуальность соединений подтверждена данными тонкослойной хроматографии на оксиде алюминия. Физико-химические и спектральные характеристики полученных α -аминофосфонатов (7,8) представлены в экспериментальной части.

Проведена оценка предполагаемой биологической активности в ряду новых α -аминофосфонатов карбоциклического ряда по программе PASS [12].

Отмечено, что введение в структуру Р-аминофосфорильного фрагмента в молекулу 1-этинил-1-аминоциклогексана способствует проявлению иммуно-модулирующих, нейропротекторного, антиангинального, антисклеротического и антиартрического действий. Аминофосфонаты алициклического ряда, содержащие в молекуле фрагменты ароматических альдегидов, могут быть перспективными субстрактами при разработке препаратов для купирования и предупреждения приступов стенокардии. Особенно интересен факт проявления рестенозной активности у аминоалкилзамещенных фосфонатов, которые могут быть перспективны при разработке препаратов для лечения и проведения профилактических мероприятий при инсульте.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК-спектры записаны на спектрометре «Nicolet 5700» в таблетках КВг. Спектры ЯМР 1 Н сняты на спектрометре MSL-400 «Bruker», корпорации «Thermo Electron Corporation» (США) с рабочей частотой 400 МГц для протонов и 100 МГц для 31 Р, при комнатной температуре,внутренний стандарт ТМС, ЯМР 31 Р – 85% 31 Р. Температура плавления определена на приборе "Boetius". Контроль за ходом реакции осуществляли методом ТСХ на пластинках с оксидом алюминия в различных системах растворителей, проявитель – йод.

1-этинил-1-иминометил-1-(3,4-диметокси)анилино)метан (5). К смеси 1.66 г (0,01моль) 3,4-диметоксибензальдегида (2) в 50 мл бензола добавляли 1.23 г (0,01моль) 1-этинил-1-аминоциклогексана (1) и 0.04 г (0.01моль) n-толуолсульфоновой кислоты. Реакционную смесь кипятили в колбе, снабжённой насадкой Дина-Старка и обратным холодильником в течение 8 ч. Реакционную массу промывали насыщенным водным раствором гидрокарбоната натрия $(3\times10\ \text{мл})$. Растворитель отогнали. Кристаллический остаток перекристаллизовывали из смеси бензол:петролейный эфир-1:1. Выход 1,81 г (67%), Т. пл. 79- $80\ ^{0}$ С; $R_{\rm f}$ 0,91(бензол:ацетон-10:1). Спектр

ИК, см⁻¹, 1600 (C=N), 1610 (С₆H₅), 2112 (С \equiv С), 3285 (\equiv СH). Найдено, (%): С, 75.20; H, 7.81; N, 5.20; С₁₇H₂₁NO₂. Вычислено, (%): С, 74.96; H, 7.38; N, 5.17.

1-этинил-1-иминометил-1-(4-(N,N-диметил)анилино)метан (**6**). Получен из п-аминодиметилбензальдегида (**3**) и 1-этинил-1-аминоциклогексана (**1**) аналогично. Выход 1.77 г (74%). Т. пл. 68-69 $^{\circ}$ C; R_f 0,87. Спектр ИК, см $^{-1}$, 1615 (C=N), 1620 (C₆H₅), 2116 (C≡C), 3265 (≡CH). Найдено, (%): C, 80.12; H, 8.69; N, 10.95. C₁₇H₂₂N₂. Вычислено, (%): C, 80.22; H, 8.71; N, 11.01.

0,0-диэтил-1-(3,4-диметоксифенил)-(1-этинилциклогексиламинометил) фосфонат (7). К смеси 1.35 г (0,01 моль) азометина (5) в 50 мл петролейного эфира (70-100 0 С) и 1.38 г (0,01 моль) диэтилфосфита (4) добавляли каталитическое количество насыщенного раствора этилата натрия. Реакционную смесь нагревали при 80^{0} С в течение 6 ч. Растворитель отгоняли. Оставшийся осадок перекристаллизовывали из гексана. Выход 1.77 г (74%). Т. пл. 83-84 0 С; $R_{\rm f}$ 0,82 (бензол:ацетон-10:1). Спектр ИК, см⁻¹, 1615 (С=N), 1620 (С₆H₅), 2102 (С≡С), 3256 (≡СН), 3225 (NH), 1260 (Р=О), 1045,1060 (Р-О-С). ЯМР 1 Н (СDСl₃), δ , м. д.: 1.28 с (6H, ОСН₃), 1.18 т (3H, J 7.1 Гц, РОСН₂СН₃), 1.31 т (3H, J 7.1 Гц, РОСН₂СН₃), 1.68-1.72 м (10H, циклогекс.), 2.38 с (1H, СН),2.67 д (1H, J 21.9 Гц NH), 3.86 - 3.96 кв (4H, РОСН₂), 6.86-7.44 м (3H, СН_{аром.}). Спектр ЯМР 31 Р (СDСl₃, δ _Р, м.д.): 20.18. Найдено, (%): С, 75.18; H, 7.64; N, 3.21; Р, 7.38. С₂₁Н₃₂О₅NР. Вычислено, (%): С, 75.31; H, 7.82; N, 3.40; Р, 7.52.

0,0-диэтил-1-(N,N-диметил анилино)-(1-этинилциклогексиламинометил) фосфонат (8). Получен из азометина (6) и диэтилфосфита (4) аналогично. Выход 1.77 г (74%). Т. пл. 74-75 $^{\circ}$ С; R_f 0,79. Спектр ИК, см⁻¹, 1620 (С₆H₄), 2110 (С≡С), 3265 (≡СН), 3230 (NH), 1245 (Р=О). 1030, 1050 (Р-О-С). Спектр ЯМР 1 Н (СDCl₃), δ , м. д.: 1.12 с (6H, NCH₃), 1.16 т (3H, J 7.0 Гц, РОСН₂СН₃), 1.27 т (3H, J 7.1 Гц, РОСН₂СН₃), 1.65-1.69 м (10H, циклогекс.), 2.25 с (1H, CH),2.73 д (1H, J 21.7 Гц NH), 3.64-3.81кв (4H, РОСН₂), 7.11-7.64 м (4H,СН_{аром.}). Спектр ЯМР 31 Р (СDCl₃, δ _P, м.д.): 22.56. Найдено, (%): C, 64.27; H, 8.43; N, 7.09; P, 7.75. С₂₁Н₃₃О₃N₂Р. Вычислено, (%): C, 64.31; H, 8.52; N, 7.12; P, 7.80.

ЛИТЕРАТУРА

- [1] Черкасов Р.А., Галкин В.И. Реакция Кабачника—Филдса: Синтетический потенциал и проблемы механизма // Усп. химии. 1998. Т. 67, вып. 10. С. 940-968.
- [2] Косыхова Л.А., Пикшилингайте Ю.-В.К., Закс А.С., Работников Ю.М. Синтез и противовоспалительная активность диамидофосфорильных производных аминоциклогексана // Хим-фарм. ж. 1996. № 5. С. 45-46.
- [3] Джиембаев Б.Ж. α-Окси- и α-аминофосфонаты шестичленных (N, O, S, Se) гетероциклов. Алматы: Комплекс, 2003. 234 с.
- [4] Черкасов Р.А., Галкин В.И, Галкина И.В., Гарифзянов А.Р., Собанов А.А. Аминофосфонаты: механизмы образования, реакционная способность и аналитические свойства // Бутлеровские сообщения. 2005. Т. 6. С. 30-36.
- [5] Pawel Kafarski, Micha Górny vel Górniak and Iga Andrasiak Kabachnik-Fields Reaction Under Green Conditions A Critical Overview // Current Green Chemistry, 2015, 2, 218-222.

ISSN 1813-1107 № 1 2020

[6] Ádám Tajti, Erika Bálint, György Keglevich Micro wave-assisted synthesis of α -aminophosphonates and related derivatives by the Kabachnik-Fields reaction// Phosphorus, Sulfur, and Silicon and the Related Elements, 2019, 194:4-6, 379-381.

- [7] Коновалова И.В., Бурнаева Л.А. Реакция Пудовика. Казань: Изд-во КГУ, 1991. 147 с.
- [8] Yashin N.V., Villemson E.V., Chemagin A.V., Averina E.B., Kabachnik M.M., Kuznetsova T.S. Synthesisofnovela-aminophosphonatescontainingsmallrings // Synthesis. − 2008. − № 3. − P. 464-468.
- [9] Пудовик А.Н., Собанов А.А., Золотухин А.В., Галкин В.И., Черкасов Р.А. Кинетика и механизм реакции Пудовика в ряду азометинов. І. Присоединение диметилфосфита к N-изопропилбензальиминам // Журн. общей химии. − 2002. − Т. 72, № 7. − С. 1141-1144.
- [10] Собанов А.А., Золотухин А.В., Галкина И.В., Галкин В.И., Черкасов Р.А. Кинетика и механизм реакции Пудовика в ряду азометинов III. Кислотно-катализируемое гидрофосфорилирование иминов // Ж. общ. Химии. 2006. Т. 76, вып. 3. С. 442-451.
- [11] Gyorgy Keglevich, Erika Balint,Reka Kangyal, Maria Balint, Matyas Milen A Critical Overview of the Kabachnik–Fields Reactions Utilizing Trialkyl Phosphites in Wateras the Reaction Medium: A Study of the Benzaldehyde-Benzylamine Triethyl Phosphite/ Diethyl Phosphite Models // Heteroatom Chemistry. 2014. Vol. 25, N 4. P. 282-289.
- [12] Поройков В.В., Филимонов Д.А. Компьютерный прогноз биоло-гической активности химических соединений как основа для поиска и оптимизации базовых структур новых лекарств // В сб.: Азотистые гетероциклы и алкалоиды. М.: Иридиум-пресс, 2001. Т. 1. С. 123-12.

REFERENSES

- [1] Cherkasov R.A., Galkin V.I. Reakcija Kabachnika–Fildsa: Sinteticheskij potencial i problemy mehanizma // Usp. himii. 1998. Vol. 67, vyp. 10. P. 940-968.
- [2] Kosyhova L.A., Pikshilingajte Ju.-V.K., Zaks A.S., Rabotnikov Ju.M. Sintez i protivovospalitel'naja aktivnost' diamidofosforil'nyh proizvodnyh aminociklogeksana // Him-farm. zh. 1996. № 5. P. 45-46.
- [3] Dzhiembaev B.Zh. α -Oksi- i α -aminofosfonaty shestichlennyh (N, O, S, Se) geterociklov. Almaty: Kompleks, 2003. 234 p.
- [4] Cherkasov R.A., Galkin V.I, Galkina I.V., Garifzjanov A.R., Sobanov A.A. Aminofosfonaty: mehanizmy obrazovanija, reakcionnaja sposobnost' i analiticheskie svojstva // Butlerovskie soobshhenija. 2005. Vol. 6. P. 30-36.
- [5] Pawel Kafarski, Micha Górny vel Górniak and Iga Andrasiak Kabachnik-Fields Reaction Under Green Conditions A Critical Overview // Current Green Chemistry, 2015, 2, 218-222.
- [6] Ádám Tajti, Erika Bálint, György Keglevich Micro wave-assisted synthesis of α -aminophosphonates and related derivatives by the Kabachnik-Fields reaction// Phosphorus, Sulfur, and Silicon and the Related Elements, 2019, 194:4-6, 379-381.
 - [7] Konovalova I.V., Burnaeva L.A. Reakcija Pudovika. Kazan': Izd-vo KGU, 1991. 147 p.
- [8] Yashin N.V., Villemson E.V., Chemagin A.V., Averina E.B., Kabachnik M.M., Kuznetsova T.S. Synthesisofnovela-aminophosphonatescontainingsmallrings // Synthesis. 2008. № 3. P. 464-468.
- [9] Pudovik A.N., Sobanov A.A., Zolotuhin A.V., Galkin V.I., Cherkasov R.A. Kinetika i mehanizm reakcii Pudovika v rjadu azometinov. I. Prisoedinenie dimetilfosfita k N-izopropilbenzal'iminam // Zhurn. obshhej himii. 2002. Vol. 72, № 7. P. 1141-1144.
- [10] Sobanov A.A., Zolotuhin A.V., Galkina I.V., Galkin V.I., Cherkasov R.A. Kinetika i mehanizm reakcii Pudovika v rjadu azometinov III. Kislotno-kataliziruemoe gidrofosforilirovanie iminov // Zh. obshh. Himii. 2006. Vol. 76, vyp. 3. P. 442-451.
- [11] Gyorgy Keglevich, Erika Balint,Reka Kangyal, Maria Balint, Matyas Milen A Critical Overview of the Kabachnik–Fields Reactions Utilizing Trialkyl Phosphites in Wateras the Reaction

Medium: A Study of the Benzaldehyde-Benzylamine Triethyl Phosphite/ Diethyl Phosphite Models // Heteroatom Chemistry. 2014. Vol. 25, № 4. P. 282-289.

[12] Porojkov V.V., Filimonov D.A. Komp'juternyj prognoz biolo-gicheskoj aktivnosti himicheskih soedinenij kak osnova dlja poiska i optimizacii bazovyh struktur novyh lekarstv // V sb.: Azotistye geterocikly i alkaloidy. M.: Iridium-press, 2001. Vol. 1. P. 123-12.

Резюме

К. А. Досжанова, А. Б. Қуандықова, Н. О. Мырзахметова, К. О. Кішібаев

ПУДОВИК РЕАКЦИЯСЫ ЖАҒДАЙЫНДА ЖАҢА α-АМИНОФОСФОНАТТАРДЫҢ СИНТЕЗІ

1-этинил-1-аминоциклогексанның 3,4-диметоксибензальдегид және п-аминодиметилбензальдегидпен өзара әрекеттесуі нәтижесінде Шиффтің негіздері алынып, Пудовик реакциясы жағдайында диэтилфосфорлы қышқылмен фосфонилирлену нәтижесінде жаңа α-аминофосфонаттар бөлініп, сипатталды. Синтезделген қосылыстардың құрамы мен құрылысы ИҚ, ЯМР 1Н және 31Р спектроскопия әдістерімен зерттеліп, расталды.

Түйін сөздер: α-аминофосфонаттар, Пудовик реакциясы, бензальдегидтер, диэтилфосфит, Шифф негіздері, ИК-, ЯМР спектроскопия.

Summary

K. A. Doszhanova, A. B. Kuandykova, N. O. Myrzahmetova, K. O. Kishibaev

SYNTHESIS OF NEW α -AMINOPHOSPHONATES UNDER THE CONDITIONS OF THE PUDOVIK REACTION

By the reaction of 1-ethynyl-1-aminocyclohexane with 3,4-dimethoxybenzaldehyde and n-aminodimethylbenzaldehyde, the corresponding Schiff bases were obtained, the phosphonylation of which by diethylphosphoric acid under the conditions of the Pudovik reaction, new α -aminophosphonates were isolated and characterized. The composition and structure of the synthesized compounds were investigated and confirmed by IR, NMR 1H, and 31P spectroscopy methods.

Key words: α -aminophosphonates, Pudovik reaction, benzaldehydes, diethyl phosphate, Schiff foundations, IR, NMR spectroscopy.